
Classification of Chemical Compounds by Protein-Compound Docking for Use in Designing a
Focused Library

Yoshifumi Fukunishi,*,† Yoshiaki Mikami,‡ Kei Takedomi,‡ Masaya Yamanouchi,‡ Hideaki Shima,‡ and Haruki Nakamura†,§

Biological Information Research Center (BIRC), National Institute of AdVanced Industrial Science and Technology (AIST), 2-41-6,
Aomi, Koto-ku, Tokyo 135-0064, Japan, Japan Biological Information Research Center (JBIRC), Japan Biological Informatics
Consortium (JBIC), 2-41-6, Aomi, Koto-ku, Tokyo 135-0064, Japan, and Institute for Protein Research, Osaka UniVersity, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan

ReceiVed May 23, 2005

We developed a new method for the classification of chemical compounds and protein pockets and applied
it to a random screening experiment for macrophage migration inhibitory factor (MIF). The principal
component analysis (PCA) method was applied to the protein-compound interaction matrix, which was
given by thorough docking calculations between a set of many protein pockets and chemical compounds.
Each compound and protein pocket was depicted as a point in the PCA spaces of compounds and proteins,
respectively. This method was applied to distinguish active compounds from negative compounds of MIF.
A random screening experiment for MIF was performed, and our method revealed that the active compounds
were localized in the PCA space of compounds, while the negative compounds showed a wide distribution.
Furthermore, protein pockets, which bind similar compounds, were classified and were found to form a
cluster in the PCA space.

Introduction

When a measure of similarity among many kinds of sub-
stances is provided, it should, in general, offer a number of
applications. The classification of proteins and chemical com-
pounds is one of the primary applications of such similarity
measures in pharmaceutical science. The classification of
proteins is important in examining biological functions and
evolution; additionally, new drugs can be developed to recognize
target proteins among similar proteins with high specificity. The
classification of compounds aids in the identification of new
active compounds which are similar to known active compounds
and also in selecting a limited number of candidate active
compounds, known as a focused library, from a large number
of chemical compounds in a database. The molecular similarity
facilitates the design of mimetics of an active compound, while
providing a measure of diversity in the chemical compound
library. Similarity searching and the evaluation of the chemical
compound library are closely related techniques.

Many methods have been proposed for similarity searching
of chemical compounds,1 such as the overlapping of chemical
structure, the CATS descriptor method developed by Schneider
et al.,2 the BCUT descriptor method,3 etc. In the CATS
descriptor method, for each pair of pharmacophoric features
(donor, acceptor, acid, base, etc.) in the molecule, the frequency
of occurrence as a function of the number of bonds separating
the features is accumulated in a pharmacophore pair vector. The
bond distances from 1 to 10 are considered over all 15 feature
combinations to give a vector size of 150. The Euclidian distance
between two pharmacophore pair vectors is used as the
similarity.

BCUT is one of the most widely used descriptor methods to
evaluate the similarity of chemical compounds and the diversity

of a given library. BCUT is a set of several descriptors, which
are eigenvalues of matrixes. The diagonal parts of the matrixes
represent the atomic charge, polarizability, and hydrogen donors
and acceptors, and the off-diagonal parts of the matrixes
represent the structure of the compound.

Although the classification of proteins has been well studied
by analyses of amino acid sequences, several recent studies have
classified proteins based on their 3D structures,4-15 and some
recent studies have focused on the local structure around a
protein pocket. Kinoshita and Nakamura,5 for example, com-
pared the molecular surfaces of proteins using a topological
graph method, and Schmitt et al.7 compared the distributions
of functional groups in the pockets. These approaches have
succeeded in the functional classification of non- or low-
homologous proteins.

The conventional methods for the classification of compounds
and proteins are based on the independent information of
compounds and proteins, respectively. To date, many protein-
compound docking programs have been developed16-25 and
large-scale computing allows us to calculate a protein-
compound affinity panel. We here propose a new method for
the classification of compounds and proteins based on the
information provided by protein-compound docking. Our
method was applied to distinguish active and negative com-
pounds of macrophage migration inhibitory factor (MIF), which
were observed by our in vitro assay.

Methods

Analysis. A measure to represent the distance between two
compounds is determined based on the protein-ligand interaction
matrix, each element of which is the corresponding docking score.
From the covariance matrix of compounds, a principle component
analysis (PCA) is performed to find similar clusters of compounds.
The same method can be applied to protein pockets as well as to
compounds.

We prepare a set of pockets P) {p1, p2, p3, ... pNr}, where pi
represents thei-th pocket and Nr is the total number of pockets,
and a set of compounds X) {x1, x2, ... xNc}, where xk represents
thek-th compound and Nc is the total number of compounds. For
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each pocket pi, all compounds of the set X are docked to the pocket
pi with scoresi

k between thei-th pocket and thek-th compound.
Here,si

k corresponds to the binding free energy.
Similarity (distance) between thek-th compound and thel-th

compound is defined as follows:

DC
kl satisfies the following three conditions, which are sufficient

for a definition of distance:DC
kk ) 0, DC

kl ) DC
lk and DC

kh +
DC

hl g DC
kl. This definition was used for cluster analysis in our

previous work.26 To define the distance between two protein pockets
DP

ij, the same analysis can be applied, changing the suffix:

The covariance matrix MC of compounds is defined as,

and

where the upper bar represents the average. Letφk be a k-th
eigenvector of MC with eigenvalueεk, and the order ofεk is
descendant. The vector of docking scores for thek-th compound
Xk ) (s1

k, s2
k, ... sNr

k) is represented by the linear combination of
φk as

The coefficient{cj} represents the coordinate of the PCA space
of compounds. To calculate the PCA space of protein pockets, the
same analysis can be applied, changing the suffix. The covariance
matrix MP of compounds is defined as,

and

Let φi be ani-th eigenvector of MP, and the vector of docking
scores for thei-th pocket is then represented by the linear
combination ofφi, whose coefficient represents the coordinate of
the PCA space of pockets.

Protein-compound docking simulation was performed by our
in-house program named Sievgene, which is a protein-ligand
flexible docking program for in silico drug screening.26 The scoring
function of this method is based on the rough shape of a protein
surface to reduce structural noise. The conventional potential
function is applied to the outer region of the protein, while in
contrast, a smooth virtual function is applied to the inner region of
the protein. Assuming that at least three ligand atoms come into
contact with the protein surface, a geometrical hash method is used
for protein-ligand conformation searching. This method was
applied to the 132 known protein-ligand complexes and correctly
predicted∼50% of these complex conformations within the 2 Å

RMSD,26 attaining a similar performance to that achieved by
popular docking programs.27 In the present study, the number of
conformers for flexible docking was limited to 100 for each
compound.

Preparation of Materials. Two datasets were prepared. The first,
which consisted of a total of 138 proteins and 1012 compounds,
was a dataset to evaluate the localizability of active compounds in
the PCA spaces. All of these proteins were extracted from
complexes that were selected from the database used in the
evaluation of the DOCK, FlexX and GOLD methods.27 This set of
138 proteins provided a rich variety of proteins and compounds
whose structures were all determined by high quality experiments
with resolution of less than 2.5 Å. The lack of atom coordination
was almost zero, and the atomic structure around the ligand pocket
was quite reliable. We removed some complexes, which contained
a covalent bond between the protein and ligand from the original
data set, since our docking program cannot perform the protein-
ligand docking when a covalent bond exists between the protein
and the ligand. The protein databank (PDB) identifiers of the used
complexes are listed in Appendix A.

Two types of subsets of protein pockets were prepared and the
current classification method was applied to these two subsets for
examination of the dependence on the choice of the proteins. One
protein set consists of diverse proteins, and another protein set
consists of similar proteins to the target protein. Since we will
examine which protein set can divide well the active compounds
from the negative compounds, both protein sets must consist of
almost the same number of proteins.

First, a preliminary docking study was performed with the 138
proteins vs the 138 compounds. Here, the 138 compounds were
the ligands of the 138 complexes extracted from the PDB as
described in our previous report.26 Cluster analysis based on the
definition of the distances given by eq 2 was applied to the 138
proteins vs the score panel of the 138 compounds. The group
average method divided 138 proteins into two kinds of clusters,
namely 7 clusters and 23 clusters. These seven clusters showed a
good correspondence to the conventional functional classification.
When two clusters out of the seven were adopted, the multiple active
site correction (MASC) scoring method showed good database
enrichment for these two clusters, which consist of total 23 proteins.
The members of each cluster would be similar to each other in
point of ligand-binding function. As the diverse protein set, we
selected the representative proteins from the 23 clusters. In each
cluster, one of the two proteins between which the distance is
shortest was selected to be the representative protein. These 23
proteins will be identified hereafter as “protein data set A” and
they are listed in Appendix A.

Next, we tried to make a cluster, whose members are similar to
the MIF, and the number of proteins of the cluster is almost the
same as the number of proteins of protein set A. One cluster, which
consists of 26 proteins including the MIF, was selected from the
above 7 clusters dividing the 138 proteins. We adopted all members
of the cluster except the MIF and these 25 proteins will be identified
hereafter as “protein data set B” and they are listed in Appendix
A. Neither protein data set A nor B includes the target protein MIF.

Two compound datasets were prepared. One dataset (compound
set C) consists of 1012 compounds originated from a random
chemical library, which includes active compounds and negative
compounds of a target protein. The current classification method
can be used as an in silico screening method. This dataset was used
to evaluate the localization of the active compounds and the
database enrichment of the current method. Another dataset
(compound set D) consists of 1006 compounds, which are mainly
some series of similar compounds, namely, amino acids, dipeptides,
tripeptides, etc. This dataset was used to evaluate the localization
of the series of compounds and classification of the proteins.

The compound set (compound set C) consisted of 12 active
compounds and 1000 negative compounds extracted from the
Coelacanth chemical compound library (Coelacanth Corporation,
East Windsor, NJ). The 12 active compounds of MIF are listed in
Figure 1, and their IC50 values are listed in Table 1. Compounds7
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and12 were selected from the PDB, and compounds1, 3, 4, 6 and
8 were reported in a previous study.28 The others (compounds2,
5, 9, 10, 11) were prepared in the present study. The definition of
the active compound is described at the last of this section. The
11047 compounds of the original Coelacanth chemical compound
library, which is a random library, were put in alphabetical order,
and the top 1000 negative compounds were selected. The correlation
coefficient between the order and the number of atoms of compound
is only 0.12; thus, these 1000 compounds will form a random
library.

The size distribution of ligands is as follows: ratio of 0-19
atoms, 0.0%; ratio of 20-29 atoms, 0.5%; ratio of 30-39 atoms,
0.5%; ratio of 40-49 atoms, 6.5%; ratio of 50-59 atoms, 22.5%;
ratio of 60-69 atoms, 40.4%; ratio of 70-79 atoms, 22.1%; and
ratio of more than 80 atoms, 7.4%. The average ligand size was
64.3 atoms.

The 3D coordinates of chemical compounds were generated by
the Concord program (Tripos, St. Louis, MO) from the 2D Sybyl

SD files provided by the Coelacanth Chemical Corporation. The
atomic charges of each ligand were determined by the Gasteiger
method.29,30 The atomic charges of proteins were the same as the
atomic charges of AMBER parm99.31

Another data set (compound set D) was also prepared to evaluate
the localizability of similar compounds and similar proteins in the
PCA spaces. This dataset consisted of a total of 169 proteins and
1006 compounds. Of the proteins, 138 were the basic protein sets
described above. In addition, 5 sugar binding proteins, 16 adenosine-
phosphate binding proteins, and 10 enzymes of prostaglandin were
included in the dataset. Tables 2-4 show the PDB IDs of these
proteins and ligands. In the present study, the sequence identities
and similarities are global sequence identities and global sequence
similarities calculated by FASTA with the Blosum50 matrix.32,33

Tables 5 and 6 show the names and structural information of the
16 AMP/ADP/ATP binding proteins and the 5 sugar binding
proteins, respectively; note that the homology of these proteins is
quite low except in several protein pairs.34 With the exception of
the pairs 12as-1asz, 1csn-1gtr, 1csn-1nks, 1gol-1nks, 1gol-1ses,
1hck-1ses and 1gh7-1so0, the amino acid sequence identities are
only 20-30%. Tables 5 and 6 also show the CATH classification
(Class, Architecture, Topology, Homologous Superfamily) of the
protein 3D structures.35,36 The architectures of the proteins also
differ, so the dataset includes a variety of 3D structures of proteins.

The compound data set includes the ligands of the 138 basic
proteins, the additional 6 monosaccharide binding proteins and the
16 AMP/ADP/ATP binding proteins described above. In addition,
20 amino acid monomers, 400 dipeptides, and 400 tripeptides are
included. For the tripeptides, since the total number of tripeptides

Figure 1. MIF active compounds.

Table 1. List of MIF Active Compounds

compounda IC50(µM) sourceb

1 0.038 Y
2 0.4 T
3 0.47 Y
4 0.55 Y
5 3.4 T
6 4.3 Y
7 7 1LJT
8 7.4 Y
9 8 T

10 8.1 T
11 30 T
12 no data 1CA7

a The compound serial number is consistent with the number in Figure
1. b “Y” indicates data originally presented by Orita et al.28 “T” represents
data from the current study, and “1LJT” and “1CA7” represent the PDB
IDs which were the source of the data in question.

Table 2. List of AMP/ADP/ATP Binding Proteins

PDB
ID

name of
liganda residue A PA

residue
B PB

residue
C PC

12as AMP 100R 1
1ady HAM 259R 1
1aer AMP 458R 1
1asz ATP 325R 1 531R 3
1aux ADT Ca ion 1,2,3
1b76 ATP 186R 1 220R,231R,

366R
3

1csn ATP Mg ion 1,2,3
1efv AMP 126A main chain 1
1gol ATP Mg ion 2,3
1gtr ATP 43H 1 270K 2,3
1hck ATP Mg ion 1,2,3
1nks ADP 54R 1
1pyg AMP 81R,193R, 310R 1
1ses AMP 528R 1
2tmd ADP none none
3r1r ATP 9K 1 91K 2 21K 3

a The abbreviations HAM and ADT indicate histidyl adenosine mono-
phosphate, and adenosine diphosphate monothiophosphate, respectively.
“Residue A” and “PA” are the binding residue or atom of the protein and
the serial number of bonded phospate, where 1, 2 and 3 represent the first,
second and third phosphates of AMP/ADP/ATP, respectively; the same
applies to the terms “Residue B”, “PB”, “Residue C” and “PC”. “Residue
A”, “Residue B” and “Residue C” bind “PA”, “PB” and “PC”, respectively.

Table 3. List of Sugar Binding Proteins

PDB ID name of ligand

1abe1 R-L-arabinose
1abe2 â-L-arabinose
1abf1 R-D-fucose
1abf2 â-D-fucose
5abp1 R-D-galactose
5abp2 â-D-galactose
1bdg glucose
1glg D-galactose
2gbp â-D-glucose
1mmu R-D-glucose
1qh7 â-D-xylopyranose
1so0 D-galactose
2aac â-D-fucose

The name of the ligand follows those in the PDB file.
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is as large as 8000 ()203), all 20 amino acids were used as the
first and last residues, and the second residues were randomly
selected from 20 amino acids to generate 400 tripeptides. Addition-
ally, 9 disaccharides in the Cambridge Structural Database (CSD)37

were added to the compound data set:R-cellobiose,â-cellobiose,
R-lactose,â-lactose,R-maltose, galabiose,D-mannose,R-D-talose,
and trehalose. Finally, the redundant 17 COX-2 inhibitors listed in
Table 4 were included as examples of drugs. The total number of
compounds was 1006.

The size distribution of the ligands is as follows: ratio of 0-9
atoms, 0.1%; ratio of 10-19 atoms, 1.7%; ratio of 20-29 atoms,
14.1%; ratio of 30-39 atoms, 29.0%; ratio of 40-49 atoms, 26.2%;

ratio of 50-59 atoms, 19.6%; ratio of 60-69 atoms, 6.5%; and
ratio of more than 70 atoms, 1.5%. The average ligand size was
42.7 atoms.

The atomic charges of each ligand were determined by the
restricted electrostatic potential (RESP) procedure using HF/6-31G*
level quantum chemical calculations31 which were performed using
the programs GAMESS and Gaussian98.38,39 The atomic charges
of proteins, dipeptides and tripeptides were the same as those of
AMBER parm99.31

The MIF active compounds were found by the following
experimental procedure. Binding affinity was experimentally
observed between MIF and 11046 chemical compounds selected
from the Coelacanth random library and their related compounds.
The first in vitro screening was a surface plasmon resonance assay
done by Biacore 3000 (Biacore International AB, Neuchaˆtel,
Switzerland). The second screening was carried out by tautomerase
enzymatic assay, which determined the IC50 values of the active
compounds and verified the results of the first screening. The
experimental conditions were the same as those previously reported
by Orita et al.:28 pH 6.0 with a buffer containing 25 mM potassium
phosphate, 0.5 mM EDTA, 0.01% tween20, and 0.25 mML-
dopachrome methyl ester as a ligand. The density of MIF was 125
ng/mL. All experiments were performed at room temperature.

The definition of “active compound” was determined as follows;
the compound, which showed the reaction unit (RU)< 20 before
injection and the RU> 20 after injection by the Biacore, was
selected as an active compound. Then, the IC50 values of the active
compounds found by the Biacore were determined as shown in
Table 1, then a compound whose IC50 value < 30 µM was
determined as an active compound. The IC50 value of one compound
(compound12) was unclear, but the compound was selected as
the active compound to increase the diversity of the set of active
compound.

Results and Discussion

Applications to the Focused Library for MIF. We applied
the current method to the analysis of the active and negative
compounds of MIF given by our in vitro screening assay. All
138 protein pockets were analyzed against the 1012 compounds
(compound set C). The average CPU time for a docking
procedure per pair of a pocket and a ligand was 149.4 s on a
Compaq Alpha ES40 workstation. Two types of subsets of
protein pockets, protein sets A and B, were then prepared and
the current method was applied to these two subsets for
examination of the dependence on the choice of the proteins.
The 23 representative protein pockets of protein set A were
analyzed against the 1012 compounds. Figure 2 shows the
corresponding PCA plots. Then the 25 protein pockets of protein
set B were analyzed against the 1012 compounds. The PCA
plots are shown in Figure 3.

The PCA results based on the full set of 138 proteins carry
the information of all 138× 1012 docking scores, while the
PCA results based on protein data set A and B carries the
information of only 23× 1012 and 25× 1012 docking scores,
respectively. Thus, the PCA result based on the full set of 138
proteins is thought to be one of the best classification results.
The PCA plots are shown in Figure 4.

The 7 known active compounds (compounds1, 3, 4, 6, 7, 8
and12) are depicted as red circles in Figures 2-4, and the 5
active compounds found in the in vitro screening assay
(compounds2, 5, 9, 10 and11) are depicted as green circles.
Two or three of the newly found active compounds are close
to the known active compounds in Figures 2-4. In Figure 2,
the first, second, third, fourth, fifth and sixth eigenvalues of
MC in eq 3 were 50.24%, 14.67%, 6.50%, 3.35%, 2.88% and
2.21%, respectively. Total 80.04% information was depicted.
In Figure 3, the first, second, third, fourth, fifth and sixth

Table 4. List of Prostaglandin Binding Proteins and Inhibitors

PDB ID protein name of liganda selectivity

none none suprofen COX1 selective
1eqg COX-1 ibuprofen COX1 selective
1eqh COX-1 flurbiprofen COX1 selective
3pgh COX-2 flurbiprofen COX1 selective
4cox COX-2 indomethacin COX1 selective
1s2a prostaglandin D2

11-keto reductase
indomethacin COX1 selective

none none ketoprofen COX1 selective
none none naproxen COX1 selective
1cx2 COX-2 Sc-558b COX2 selective
6cox COX-2 Sc-558b COX2 selective
1s2c prostaglandin D2

11-keto reductase
flufenamic acid no data

none none celecoxib COX2 selective
none none etodolac COX2 selective
none none nimesulide COX2 selective
none none rofecoxib COX2 selective
1pxx COX-2 diclofenac COX2 selective
1cqe COX-1 flurbiprofen COX1 selective

a The name of the ligand follows those in the PDB file.b1-Phenylsul-
fonamide-3-trifluoromethyl-5-p-bromophenylpyrazole.

Table 5. CATH Classification and Protein Names

PDB
code

CATH
namea

CATH
no.b name

12as TLS 30.930.10 asparagine synthetase
1ady ABA 40.50.800 histidyl-tRNA synthetase
1aer CMP 90.175.10 exotoxin
1asz TLS 30.930.10 aspartyl-tRNA synthetase
1aux TLS 30.470.20 synapsin Ia
1b76 no data no data glycyl-tRNA synthetase
1csn TLS 30.200.20 casein kinase-1
1efv ABA 40.50.1120 electron-transfer flavoprotein
1gol TLS 30.200.20 Map kinase Erk2
1gtr ABA 40.50.620 glutaminyl-tRNA synthetase
1hck TLS 30.200.20 cyclin-dependent kinase 2
1nks ABA 40.50.300 adenylate kinase
1pyg CMP 90.270.10 glycogen phosphorylase b
1ses TLS 30.930.10 seryl-tRNA synthetase
2tmd ABA 40.50.720 trimethylamine dehydrogenase
3r1r CMP 90.188.10 ribonucleotide reductase R1

a CATH classification name. TLS, ABA and CMP correspond to two-
layer sandwich,RâR sandwich and complex structures, respectively.
b CATH classification number. The first digits of all proteins are “3”.

Table 6. CATH Classification and Protein Names

PDB code CATH namea CATH numberb name

1abe,1abf,5abpc RâR sandwich 3.40.50.2300 L-arabinose-binding protein
1bdg RâR sandwich 3.40.367.20 hexokinase
1glg,2gbpc RâR sandwich 3.40.50.2300 chemotactic protein receptor
1mmu no data 8.1.176.1 galactose mutarotase
1qh7 â sandwich 2.60.120.180 xylanase
1so0 no data no data galactose mutarotase
2aac â sandwich 2.60.120.280 regulatory protein Arac

a CATH classification name.b CATH classification number.c The ligands
of these proteins are different from each other. The names of these ligands
are summarized in Table 3.
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eigenvalues of MC in eq 3 were 53.17%, 14.82%, 6.91%, 2.55%,
2.42% and 2.41%, respectively. Total 82.28% information was
depicted. In Figure 4, the first, second, third, fourth, fifth and
sixth eigenvalues of MC in eq 3 were 38.59%, 22.24%, 5.08%,
2.63%, 1.62% and 1.28%, respectively.

In Figures 2-4, the distribution of the active compounds is
localized comparing to the distribution of the negative com-
pounds in almost all cases. These results show that it is possible

to select a set of candidate active compounds, which is a so-
called focused library, even if the 3D structure of the target
protein is not available. When one or more active compounds
are known a priori, the compounds, which are close to the
known active compound(s) in the PCA space could be candidate
active compounds. In Figures 3a and 4, the degree of localization
of active compounds is similar, and the distributions of the active

Figure 2. PCA plots of MIF active and negative compounds. Twenty-
three representative proteins (protein data set A) were used for the
analysis. The red circles represent the 7 known active compounds, and
the green circles represent the 5 newly found active compounds. (a)
PCA plot with the first and second major coordinates; (b) PCA plot
with the third and fourth major coordinates; (c) PCA plot with the fifth
and sixth major coordinates.

Figure 3. PCA plots of MIF active and negative compounds. Twenty-
five proteins of a cluster, which includes MIF were used for the analysis.
MIF itself was excluded from the protein data set (protein data set B).
The red circles represent the 7 known active compounds, and the green
filled circles represent the 5 newly found active compounds. (a) PCA
plot with the first and second major coordinates; (b) PCA plot with
the third and fourth major coordinates; (c) PCA plot with the fifth and
sixth major coordinates.

Protein-Compound Docking Journal of Medicinal Chemistry, 2006, Vol. 49, No. 2527



compounds localize better than those shown in Figure 2a. Thus,
when the proteins are suitably selected, as in the present case
in which the proteins are close to the target protein, a data set
of only some proteins (25 proteins in the present case) gives
results similar to those obtained using the data set of all proteins
(138 proteins). Additionally, the present results show that the
distribution does not change even if the target protein is not
used in the analysis.

Figures 2b and 2c show the PCA results of protein data set
A projected onto the third and fourth axes, and the fifth and
sixth axes, respectively. The active compounds localize in Figure
2a, but do not so localize in Figures 2b and 2c. The projection
of the active compounds onto the seventh and eighth axes
localizes again. Figures 3b and 3c show the PCA results of
protein data set B projected onto the third and fourth axes, and
the fifth and sixth axes, respectively; the active compounds
localize in both figures. Additionally, the projection of the active
compounds onto the seventh and eighth axes also localizes.
Thus, to make a focused library, 4 or more axes should be
considered.

In Figures 2b and 2c, only one or two of the newly found
active compounds are close to the known active compounds,
but in Figures 3b and 3c, almost all of the newly found active
compounds are close to the known active compounds. These
results suggest that the current analysis is useful to predict new
active compound(s) based on the known active compound(s)
when the protein data set is suitably selected.

The volume of the spatial distribution of the active compounds
was estimated. In N-dimensional PCA space, the average radii
of distribution of active and all compounds were calculated
assuming that they are spherical distributions. Then, the volumes
and overlapping volumes among these spheres were calculated
in the N-dimensional space. The larger volume means the wider
distribution. The overlapping volumes were scaled in %, namely,
the overlapping volume between the sphere of active compounds
and the sphere of the all compounds was divided by the volume
of the sphere of the all compounds. For protein set A, the
volumes of active compounds in the whole compound’s space
were 26.0%, 15.0%, 20.2%, 42.9%, 30.4%, 27.0% and 29.5%
for 1, 2, 3, 4, 5, 6 and 10 dimensional spaces, respectively. For
protein set B, the volumes of active compounds in the whole
compound’s space were 59.9%, 4.4%, 5.1%, 4.9%, 4.6%, 8.1%
and 1.3% for 1, 2, 3, 4, 5, 6 and 10 dimensional spaces,

respectively. These results are consistent with the Figures 2 and
3. The active compounds localized when protein set B is used
rather than protein set A.

Protein data set B gives better results than protein data set
A; thus, the choice of a suitable set of proteins is important to
design a focused library. One way to make a good choices is to
adopt proteins in a cluster, which includes the target protein.

In Figures 2-4, the centers of distribution are different from
the origin of the axes. The docking score corresponds to the
binding free energy so that the range of score values is-5.5-
0.0 in the present study. In some cases, the docking procedure
fails to generate a protein-ligand complex structure, and the
score is then set to+1. These points, which correspond to
misdocking, are located far away from the major cluster of
points in the PCA space so that the center of the distribution of
the major cluster is different from the origin of the axes.

Generation of the Focused Library.A focused library was
generated using the following method. In the PCA space, the
compounds in a sphere whose center was set to the mass center
of known compounds were selected as a focused library. The
principal component axes were scaled to set the standard
deviation of the distribution of compounds of each axis to 1.
Ten major principal components were used. Figure 5 shows the
database enrichment of our focused library, changing the radius
of the sphere. The results obtained by the Multiple Active Site
Correction (MASC) scoring method are also depicted for
comparison.26,40

The increase of number of the used principal components
does not mean the increase of the enrichment. The enrichment
changes due to the number of the used principal components
as follows: 16.7%, 83.3%, 75.0%, 75.0% and 75.0% of the
ligands were found among the first 10% of the database with
1, 5, 10, 15, 20 principal components, respectively, when the
protein set B was used. The first principal component, the first
5 principal components, the first 10 principal components, and
the first 20 principal components have 53.17%, 79.87%, 89.98%,
and 99.48% of the total information. The minor principal
components will have noise, which is a computational error,
we do not need the all information of the protein-compound
affinity matrix to achieve a good enrichment.

The database enrichment of our focused library is better than
that obtained by the MASC scoring method, until when the first

Figure 4. PCA plot of MIF active and negative compounds with the
first and second major coordinates. All 138 proteins were used for the
analysis. The red circles represent the 7 known active compounds, and
the green circles represent the 5 newly found active compounds.

Figure 5. Database enrichment for MIF. The black, green, blue and
red lines correspond to the database enrichment curves by the current
PCA study with all 138 proteins, with the protein data set B, by the
MASC scoring method with all 138 proteins, and by the MASC scoring
method with protein data set B and the target MIF, respectively.
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15% of compounds are selected for the database. Even if all
proteins are used for screening, the present system remains
superior, until the first 15% of compounds are selected for the
database, after which the MASC system is better. The result of
the protein data set without the target protein MIF is quite close
to that of the protein data set with MIF, suggesting that our
approach is effective even if the precise 3D structure of the
target protein is unknown. The present method measures the
distances among compounds by the docking scores. The protein
pockets were used as probes to examine the chemical structure,
which could be the partial structure or the whole structure, of
each compound. Thus, when we adopt enough number of protein
pockets to distinguish the all compounds of the compound
library, the present method could divide the active compounds
from the negative compounds even without the target protein.

In a previous study, a cell-based analysis was applied to
prepare a focused library, and this analysis was adopted in the
BCUT method.41 The compound space was divided into cells
by mesh, and the compounds included in each cell in which an
active compound was included were adopted into the focused
library. The cell-based analysis is suitable for designing a
random library, but the present method was found to be more
effective for generating a focused library in the current study.
The distribution of active compounds is more circular (sphere)
than square (cube), and the volume of the circle (sphere) is
smaller than that of the square (cube) covering the distribution
of the active compounds.

The most conventional indexes are the mass weight and Log
P of each compound. The principal components by the present
study include the information about the number of atoms and
the solvation free energy of each compound as mentioned later
in “classification of compounds” section. Since the number of
atoms and the solvation free energy are closely related to the
mass weight and Log P, the present study considers these
indexes. We examined the efficiency of classifications by the
present method and the conventional method. The 1012
compounds in compound set C were plotted onto 2D space,
namely number of atoms vs solvation free energy. Then the
same screening method as the present study was applied to the
2D space. The conventional method yielded a 6.7-13.3-fold
enrichment, with 66.7% and 66.7% of the ligands found among
the first 5% and 10% of the database, respectively. On the
contrary, the present method based on protein set B yielded a
8.3-15-fold enrichment, with 75.0% and 83.3% of the ligands
found among the first 5% and 10% of the database, respectively.
The result by the present study was better than that of the
conventional method.

The known seven active compounds consist of only 20-31
atoms, and they are much smaller than the average size of the
compound set C, 64.3 atoms. But the newly found five active
compounds consist of 28-65 atoms, and they are a little bigger
than these seven active compounds. Thus, the conventional
method could find the seven known active compounds out of
12, but it was difficult to find the rest newly found actives. On
the contrary, the present method could overcome this defect.

Classification of Proteins. A total of 169 proteins were
analyzed using 1006 compounds (compound set D) as stated
above. The average CPU time for a docking procedure by
Sievgene was 68.1 s on a Compaq Alpha ES40 workstation.

Tables 5 and 6 show the structural information of the AMP/
ADP/ATP binding proteins and sugar binding proteins. Most
of the global amino acid sequence identities are less than 25%,34

and also the structure classification proves that these 3D folds
are different to each other. The present structure classification

follows the CATH classification, and the first, second, third and
fourth digits represent the class, architecture, topology and
homology classification numbers.35,36

Figure 6a shows the results of PCA plotting of protein pockets
with the first and second major coordinates. The first, second,
third and fourth eigenvalues of MP in eq 6 were 62.27%,
12.57%, 3.35% and 2.63%, respectively.

The present classification method successfully classified the
protein binding pockets. As shown in Tables 5 and 6, some
proteins, which bind the similar ligands, are in the different
family or have different 3D fold. Proteins, which bind similar
ligands, could form clusters in the protein space, even if the
amino acid sequences were not homologous.

The distributions of endoribonucleases, metalloproteases,
sugar binding proteins and acid proteases are localized near each
other, indicating that the PCA of the docking score matrix works
well as a functional analysis. Endoribonuclease binds RNA and
hydrolyzes its phosphodiester chemical bond. The RNA is
composed of only four kinds of RNAs (A, U, C and G), and
the diversity of the RNA binding pocket is therefore expected
to be small.

The acid proteases in the present study were aspartic protease
(5er1, 1epo, 1eed), pepstatin (1apt, 1apu), rennin (1rne) and HIV

Figure 6. PCA plots of protein space. The red circles, blue circles,
green squares, black squares, blue open squares, red open triangles,
black open triangles and dots represent metalloproteases, acid proteases,
sugar binding proteins, neuraminidases, endoribonucleases, AMP/ADP/
ATP binding proteins, catalytic antibodies and other proteins, respec-
tively. (a) Using 1006 compounds; (b) using 1000 compounds extracted
from the Coelacanth random library.
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protease (1htf, 1hos, 1hpv, 1ida, 1qbu) as listed in Table 9. With
the exception of the pairs 5er1-1apt, 1rne-1htf, 1rne-1qbu, 1htf-
1ida, 1htf-1qbu, 1ida-1qbu, the amino acid sequence identities
are only 20-30%. The sequence identity between these acid
proteases is not high, but the local structures of pockets are
similar in that all are at the clefts between the two units of the
protein dimers, and these tunnel-like pockets are covered by
loop regions. Furthermore, the sizes of these pockets are similar.
Indeed, the inhibitors of HIV protease were developed based
on rennin inhibitors.42

The binding pockets of metalloproteases are also very similar.
Each binding pocket is at the cleft between aâ-strand and an
R-helix that is in parallel with theâ strand, and a metal ion
that binds the ligand directly also binds theR-helix. However
the amino acid sequence identities among them are not so high,
namely, with the exception of the pairs 1hfc-1atl and 1htc-1jap,
the amino acid sequence identities are only 20-24%.

The CATH classification numbers support these observations.
As shown in Tables 7-9, the CATH classification numbers of
most of the proteins examined in the present study are the same
in each group.

The proteins with the same functions are plotted as neighbor-
ing points, even if the sequence identities between them are
low. The distributions of some proteins with different functions
overlap. Most of the proteins used in this analysis are proteases
and peptidases, which bind peptide-like molecules, and the

variety of proteins is thus limited. This poor variety of proteins
may cause the overlap in the distributions of different proteins.

There are a certain number of redundant proteins in the
protein data set. Specifically, there are 1, 3 and 5 redundant
proteins for endoribonucleases, metalloproteases and acid pro-
teases, respectively, and 4 endoribonucleases, 7 metalloproteases
and 11 acid proteases were used in the present study. Tables
7-9 show the global amino acid sequence identities and
similarities of these proteins. Exactly identical proteins appear
as different points in the PCA space because the local pocket
structures differ depending on the ligand binding states.

The distribution of AMP/ADP/ATP binding proteins is
delocalized. The CATH classification numbers shown in Table
5 indicate that the global 3D structures of these proteins are
different from each other. Also, the local structures of the
binding pockets are different and, as shown in Table 2, the
binding mode of each complex is also different. For example,
the Mg2+ ion of casein kinase-1 (1csn) or cyclin-dependent
kinase 2 (1hck) binds all three phosphates, but the Mg2+ ion of
MAP kinase ERK2 (1gol) binds the second and third phosphates
but does not bind the first. In many cases, ARG or LYS residues
bind phosphates, but in trimethylamine dehydrogenase (2tmd),
the phosphate is not bonded by the protein but is exposed to
the solvent. There are a variety of distances between the
hydrophobic pocket, which binds the adenosine scaffold of
AMP/ADP/ATP, and the phosphate-binding site composed of
Mg2+ ion, ARG, LYS or HIS. The chemical structures of AMP,
ADP and ATP are similar to each other and differ only in the
number of phosphates. However, the pharmacophores of the
AMP/ADP/ATP binding proteins are different; therefore, the
distribution of these proteins could be delocalized.

The robustness of this analysis was evaluated by changing
the compound data set. In this case, the atomic charges of
compounds were calculated by the Gasteiger method.29,30 The
PCA results did not change qualitatively due to changes in the
quality of the atomic charges between the RHF/6-31G* level
and the Gasteiger charges (data not shown). The compound data
set was also replaced by the Coelacanth random library, which
was used for screening MIF active compounds as discussed
above. Figure 6b shows the PCA results obtained using 1000
compounds extracted from this random library (compound set
C without the 12 active compounds). Although we expected
no true binder for each protein in this random library, the PCA
results did not change qualitatively. Specifically, the distributions
of endoribonucleases, metalloproteases, sugar binding proteins
and acid proteases are localized with each other, and the
distribution of AMP/ADP/ATP binding proteins is delocalized,
while the principal component axes are rotated.

Classification of Compounds.A total of 1006 compounds
(compound set D) were analyzed using 169 proteins; the set of
proteins and compounds is the same set discussed in the previous
section. To analyze diversity changes by oligomerization, the
data set included 20 amino acids, 400 dipeptides, 400 tripep-
tideps, 13 monosaccharides, and nine disaccharides. Redundant
17 COX-2 inhibitors were also included as examples of drugs.
Figure 7 shows the PCA results of compounds with the first
and second major coordinates. The first, second, third and fourth
eigenvalues of MC in eq 3 were 73.99%, 13.87%, 1.87% and
1.30%, respectively.

The distributions of amino acids, pepetides, saccharides and
COX-2 inhibitors are localized as shown in Figure 7; this
localization suggests that our compound classification system
works well. The distributions of AMP/ADP/ATPs are restricted
to a small region, while the distribution of AMP/ADP/ATP

Table 7. List of Endoribonucleases

PDB code CATH namea CATH no.b name

2aad single sheet 2.20.25.50 ribonuclease T1
1rnt,6rntc single sheet 2.20.25.50 ribonuclease T1
1rds single sheet 2.20.25.50 ribonuclease Ms

a CATH classification name.b CATH classification number.c The ligands
of 1rnt and 6rnt are guanosine-2′-monophosphate and adenosine-2′-
monophosphate, respectively.

Table 8. List of Metalloproteases

PDB code CATH namea CATH no.b name

1hfc RâR sandwich 3.40.390.10 fibroblast collagenase
1atl RâR sandwich 3.40.390.10 atrolysin C
1hyt,1lna,
1tlp,1tmnc

roll 3.10.170.10 thermolysin

1jap RâR sandwich 3.40.390.10 matrix
metalloproteinase-8

a CATH classification name.b CATH classification number.c The ligands
of 1hyt, 1lna, 1tlp and 1tmn are benzylsuccinic acid, dimethyl sulfoxide,
phosphoramidon andN-(1-carboxy-3-phenylpropyl)-L-leucyl-L-tryptophan,
respectively.

Table 9. List of Acid Proteases

PDB code CATH namea CATH no.b name

5er1,1epo,1eedc barrel 2.40.70.10 endothiapepsin
1apt,1apud barrel 2.40.70.10 penicillopepsin
1rne barrel 2.40.70.10 renin
1htf,1hos, 1hpve barrel 2.40.70.10 HIV-1 protease
1ida barrel 2.40.70.10 HIV-2 protease
1qbu barrel 2.40.70.10 HIV-1 protease

a CATH classification name.b CATH classification number.c The ligands
of 5er1, 1epo and 1eed are leucinol, n-carbonylmorpholine and Pd125754
(tert-butyloxycarbonyl-1-hydroxy-3-phenylalanine-propylene-1-hydroxy-3-
phenylalanine-ethylene), respectively.d The ligands of 1apt and 1apu are
isovaleryl (Iva)-Val-Val-Lysta-O-Et and isovaleryl (Iva)-Val-Val-Sta-O-
Et, respectively.e The ligands of 1htf, 1hos and 1hpv are Gr126045 (2-
(benzylcarbamoyl-phenylacetylamino-methyl)-5,5-dimethyl-thiazolidine-4-
carboxylic acid (hydrozymethyl-2-phenylethyl)amide)), Sb204144 ((2-
phenyl-1-carbobenzyl-oxyvalyl-amino)ethyl-phosphinic acid) and Vx-478
(3(S)-N-(3-tetrahydrofuranyloxycarbonyl)amino-1-(N,N-isobutyl,4-aminoben-
zenesulfonyl)amino-2-(S)-hydroxy-4-phenylbutane), respectively.
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binding proteins is wide, as shown in Figure 6. The variety of
the binding pocket, which was discussed in the previous section,
does not indicate variety of the ligand.

The distributions of amino acids, dipeptides and tripepetides
are localized and the overlaps between these distributions are
poor. Minor overlap is observed between the distributions of
amino acids and dipeptides, while no overlap is observed
between the distributions of amino acids and tripeptides.
Furthermore, the distribution of dipeptides shows only a little
overlap with that of tripeptides. Part of the chemical structure
of amino acids is included in the dipeptides and tripeptides,
but the pharmacophore could be different, showing the spatial
distribution of the essential functional groups for protein-ligand
binding. Also, the volumes of amino acids, dipeptides and
tripeptides are different. The protein, which binds only a small
molecule, cannot bind a larger molecule than its binding pocket.
Small compounds, such as amino acids and monosaccharides,
locate on the left side of PCA space while larger compounds,
such as dipeptides, tripeptides and disaccharides, locate on the
right. Thus, similarity of partial chemical structure does not
correspond to the first or second principal axes in Figure 7.
The same is true of dipeptides and tripeptides.

The physical meaning of the principal component axis was
investigated, and the correlation coefficients between the total
number of atoms of each compound and the principal component
values were calculated. The coefficients were 0.837 for the first
axis, 0.465 for the second axis, 0.176 for the third axis, 0.041
for the fourth axis, 0.085 for the fifth axis, and 0.014 for the
sixth axis. Thus, the first principal component axis corresponds
to the total number of atoms of each compound. The total
number of hydrogen donors, the total number of hydrogen
acceptors, and the solvation free energy of a given compound
depends strongly on the total number of atoms of the compound,
so these values are not good parameters. The correlation
coefficients between the solvation free energy per atom of the
compound and the principal component values were calculated
and were found to be 0.132 for the first axis, 0.311 for the
second axis, 0.010 for the third axis, 0.494 for the fourth axis,
0.157 for the fifth axis, and 0.084 for the sixth axis. Thus, the
second and fourth principal component axes represent the
solvation free energy per atom of a compound.

The distribution of tripeptides is wider than that of dipeptides
or amino acid monomers, and the distribution of dipeptides is
wider than that of amino acid monomers. The oligomerization
of amino acids increases the diversity of the compounds.

In contrast, the diversity of disaccharides is almost the same
as that of monosaccharides. These distributions are separated
well, and there is no overlap between them. It is difficult to
distinguish between axial and equatorial OH groups. As shown
in Table 2, some proteins bind more than two kinds of
saccharides. The difference among saccharides is the difference
in the position of the OH groups of the saccharide. Thus,
individual monosaccharides could not be distinguished well, and
individual disaccharides could not be distinguished as well as
monosaccharide. Thus, the diversities of mono- and disaccha-
rides tend to be underestimated. In contrast, the volume
difference is clearly distinguished, and the distributions of mono-
and disaccharides are thus well separated.

The distributions of COX-1 selective inhibitors and COX-2
selective inhibitors are wide and these distributions overlap to
the extent that no difference between them can be identified in
the PCA plot. The compounds listed in Table 4 are all COX-2
inhibitors but some of these inhibitors inhibit COX-1 rather than
COX-2, since the 3D structure of COX-2 is quite similar to
that of COX-1; the sequence identity between them is 64.26%.
The difference in activities between COX-1 selective inhibitor
and COX-2 selective inhibitor43 is so little that our docking
software was unable to distinguish between them. A more
precise score function or careful investigation of protein-ligand
complex structures will be necessary to distinguish and develop
COX-2 selective inhibitor.44-46

The robustness of the present analysis was evaluated by
replacing the compound data set from charges by the RHF/6-
31G* level with Gasteiger charges.29,30 The PCA results did
not change either qualitatively or qualitatively with the change
in the quality of the atomic charges (data not shown).

Conclusion

We developed a new classification method for proteins and
compounds, providing the PCA of a protein-compound affinity
map, which is constructed by a protein-compound docking
program. Analysis of protein-ligand binding affinity could be
used as a similarity search of the active compounds and the
lead optimization. The first and second (or fourth) principal
component values represent the total number of atoms and the
solvation free energy per atom of the compound, respectively.
A focused library for MIF generated by our method showed
good database enrichment, which is equivalent to that obtained
by an in silico screening method. If one or more active
compounds are found for a target protein, the compounds that
are close to the active compound in the compound space could
be candidate active compounds for the target protein.

The BCUT descriptor is useful to evaluate the diversity of a
compound based on the information of the compound itself.
This method requires neither the 3D structure of the target
protein nor the protein-ligand docking; however, to apply the
BCUT method, many active compounds must be known.3 On
the other hand, the present classification method is based on
the information of protein-ligand docking. Thus, when the 3D
structure of the target protein is available and a conventional
in silico screening method could predict one or more candidate
active compound(s), this method could provide a focused library
even if no active compound is known. Inversely, when some
active compounds are known, this method can provide a focused
library without any known 3D structure of the target protein. If

Figure 7. PCA plot of compound space. The green crosses, blue
crosses, and red crosses represent mono-, di- and tripeptides, respec-
tively. The red squares, blue squares, green triangles, red open triangles,
blue open triangles, and dots represent monosaccharides, disaccharides,
adenosine phosphates (AMP, ADP and ATP), COX-1 selective inhibi-
tors, COX-2 selective inhibitors and other compounds, respectively.

Protein-Compound Docking Journal of Medicinal Chemistry, 2006, Vol. 49, No. 2531



the compounds that are generated by combinatorial synthesis
were plotted in the compound space, our method could evaluate
the diversity of the compound library.

The drawback of our method is that it requires a large-scale
protein-ligand docking simulation. This problem may be solved
by the usage of the recent grid computing. However, the
applications of a protein-compound affinity matrix are being
developed and extended. For example, experimental observa-
tions indicate that precise IC50 values can be estimated from
the protein-compound affinity matrix.47

The present classification method successfully classified the
protein binding pockets. Proteins having similar ligand-binding
functions could form clusters in the protein space, even if the
amino acid sequences were not homologous or the entire 3D
folds were not similar. When the protein-compound affinity
matrix is available, our method is useful in providing a new
classification of proteins from a different point of view than
the conventional fold classifications. The present method
projected the classification result into 2-D space, while the
conventional sequence-based classification methods shows the
result as a dendrogram. It is easier to understand the diversity
of a set of proteins in the 2-D plot rather than the dendrogram.
The similarities among proteins are measured by the protein-
compound affinities by the present method. Thus, the similar
proteins could bind the similar ligands. If two protein clusters
have similar or related functions, the distributions of these two
clusters are expected to be close to each other.

The present method would not provide the optimal classifica-
tions of compounds and proteins. Other methods such as the
factor rotation method can maximize the variance of the plotted
data and would provide more diverse classification, in which
the overlaps among protein clusters are decreased, rather than
the current results.48,49
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Appendix A

Basic protein set: The protein databank (PDB) identifier list
of the basic protein set is: 1a28, 1a42, 1a4 g, 1a4q, 1abe, 1abf,
1aco, 1ai5, 1aoe, 1apt, 1apu, 1aqw, 1atl, 1b58, 1b9v, 1bma,
1byb, 1byg, 1c1e, 1c5c, 1c83, 1cbs, 1cbx, 1cdg, 1ckp, 1cle,
1com, 1coy, 1cps, 1cvu, 1d0l, 1d3h, 1dd7, 1dg5, 1dhf, 1dog,
1dr1, 1ebg, 1eed, 1ejn, 1epb, 1epo, 1ets, 1f0r, 1f0s, 1f3d, 1fen,
1fkg, 1fki, 1fl3, 1glp, 1hdc, 1hfc, 1hos, 1hpv, 1hsb, 1hsl, 1htf,
1hyt, 1ida, 1ivb, 1jap, 1lah, 1lcp, 1ldm, 1lic, 1lna, 1lst, 1mbi,
1mdr, 1 mld, 1 mmq, 1mrg, 1mts, 1mup, 1nco, 1ngp, 1nis, 1okl,
1pbd, 1pdz, 1phd, 1phg, 1poc, 1ppc, 1pph, 1pso, 1qbr, 1qbu,
1qpq, 1rds, 1rne, 1rnt, 1rob, 1snc, 1srj, 1tlp, 1tmn, 1tng, 1tnh,
1tni, 1tnl, 1tyl, 1xid, 1xie, 1yee, 2aad, 2ack, 2ada, 2cht, 2cmd,
2cpp, 2ctc, 2fox, 2gbp, 2ifb, 2pk4, 2qwk, 2tmn, 3cla, 3cpa, 3erd,
3ert, 3tpi, 4aah, 4est, 4lbd, 4phv, 5abp, 5cpp, 5er1, 6rnt and
7tim. For 1abe, 1abf, 5abp and 1htf, two protein pockets were
prepared, since these proteins each bind two kinds of ligands.
In addition, 1gc7, which was our target protein MIF, was also
included.

Protein set A: The PDB IDs of the representative proteins
of the protein set A are 1nis, 1aco, 1mdr, 1cbx, 2fox, 1mup,
1qpq, 1c83, 2ada, 1mrg, 1d3h, 4lbd, 1abf, 1lst, 1ets, 2ctc, 1pbd,
1rds, 2cmd, 2gbp, 1hsl, 1lah and 1ebg.

Protein set B: The PDB IDs of the proteins of the protein
set B are 7tim, 1r55, 1okl, 1ivb, 1bqq, 2tmn, 1snc, 2qwk, 1tace,
1hsb, 1yee, 1mdr, 1fl3, 3tpi, 2ack, 1pdz, 1cbx, 2cmd, 1mld,
3cpa, 1lcp, 1qpq, 4aah, 1ldm and 1pbd.
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