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We developed a new method for the classification of chemical compounds and protein pockets and applied
it to a random screening experiment for macrophage migration inhibitory factor (MIF). The principal
component analysis (PCA) method was applied to the pretmpound interaction matrix, which was

given by thorough docking calculations between a set of many protein pockets and chemical compounds.
Each compound and protein pocket was depicted as a point in the PCA spaces of compounds and proteins,
respectively. This method was applied to distinguish active compounds from negative compounds of MIF.
A random screening experiment for MIF was performed, and our method revealed that the active compounds
were localized in the PCA space of compounds, while the negative compounds showed a wide distribution.
Furthermore, protein pockets, which bind similar compounds, were classified and were found to form a
cluster in the PCA space.

Introduction of a given library. BCUT is a set of several descriptors, which

When a measure of similarity among many kinds of sub- are eigenvalues of matrixes. The diagonal parts of the matrixes
stances is provided, it should, in general, offer a number of represent the atomic charge, polarizability, and hydrogen donors

applications. The classification of proteins and chemical com- and acceptors, and the off-diagonal parts of the matrixes

pounds is one of the primary applications of such similarity represent the structu_r_e Of_ the compo_und. .
measures in pharmaceutical science. The classification of Although the classification of proteins has been well studied

proteins is important in examining biological functions and by anquses of a_lmino acid sequences, several recent studies have
evolution; additionally, new drugs can be developed to recognize classified proteins based on their 3D structuré$,and some
target proteins among similar proteins with high specificity. The '€cent studies have focused on the llj)(:cal structure around a
classification of compounds aids in the identification of new Protéin pocket. Kinoshita and Nakamdréor example, com-
active compounds which are similar to known active compounds Pared the molecular surfaces of proteins using a topological
and also in selecting a limited number of candidate active 9"@Ph method, and Schmitt et’atompared the distributions
compounds, known as a focused library, from a large number Of functional groups in the pockets. These approaches have
of chemical compounds in a database. The molecular similarity Succeeded in the functional classification of non- or low-
facilitates the design of mimetics of an active compound, while hemologous proteins. -
providing a measure of diversity in the chemical compound The conventional methods for the classification of compounds
library. Similarity searching and the evaluation of the chemical @nd proteins are based on the independent information of
compound library are closely related techniques. compounds and proteins, respectively. To date, many pretein
Many methods have been proposed for similarity searching Compound docking programs have been devel8pédand
of chemical compoundssuch as the overlapping of chemical 1arge-scale computing allows us to calculate a protein
structure, the CATS descriptor method developed by Schneidercompound affinity panel. We here propose a new method for
et al.2 the BCUT descriptor methot,etc. In the CATS the classification of compounds and proteins based on the
descriptor method, for each pair of pharmacophoric features nformation provided by proteiacompound docking. Our
(donor, acceptor, acid, base, etc.) in the molecule, the frequency™ethod was applied to distinguish active and negative com-
of occurrence as a function of the number of bonds separatingPounds of macrophage migration inhibitory factor (MIF), which
the features is accumulated in a pharmacophore pair vector. TheVere observed by our in vitro assay.
bond distances from 1 to 10 are considered over all 15 featurelvIethods
combinations to give a vector size of 150. The Euclidian distance
between two pharmacophore pair vectors is used as the Analysis. A measure to represent the distance between two
similarity. compounds is determined based on the pretégand interaction
BCUT is one of the most widely used descriptor methods to matrix, each element of which is the corresponding docking score.

valuate the similarity of chemical compounds and the diversit From the covariance matrix of compounds, a principle component
evaluate the similarity or chemical compounds a e diversity analysis (PCA) is performed to find similar clusters of compounds.

The same method can be applied to protein pockets as well as to
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each pocket;pall compounds of the set X are docked to the pocket RMSD26é attaining a similar performance to that achieved by

pi with scoresk between the-th pocket and thé-th compound. popular docking progranis.in the present study, the number of

Here, sk corresponds to the binding free energy. conformers for flexible docking was limited to 100 for each
Similarity (distance) between theth compound and théth compound.

compound is defined as follows: Preparation of Materials. Two datasets were prepared. The first,

which consisted of a total of 138 proteins and 1012 compounds,
was a dataset to evaluate the localizability of active compounds in
1) the PCA spaces. All of these proteins were extracted from
complexes that were selected from the database used in the
evaluation of the DOCK, FlexX and GOLD metho#sThis set of
DS satisfies the following three conditions, which are sufficient 138 proteins provided a rich variety of proteins and compounds
for a definition of distance:D% = 0, D% = D¢ and D% + whose structures were all determined by high quality experiments
DS, > DS. This definition was used for cluster analysis in our with resolution of less than 2.5 A. The lack of atom coordination
previous worlk® To define the distance between two protein pockets was almost zero, and the atomic structure around the ligand pocket
DPj, the same analysis can be applied, changing the suffix: was quite reliable. We removed some complexes, which contained
a covalent bond between the protein and ligand from the original
data set, since our docking program cannot perform the protein
@) ligand docking when a covalent bond exists between the protein
and the ligand. The protein databank (PDB) identifiers of the used
complexes are listed in Appendix A.
The covariance matrix Mof compounds is defined as, Two types of subsets of protein pockets were prepared and the
current classification method was applied to these two subsets for
c 1N §< g examination of the dependence on the choice of the proteins. One
M~ :EZ(SJF— )s —s) 3) protein set consists of diverse proteins, and another protein set
= consists of similar proteins to the target protein. Since we will
examine which protein set can divide well the active compounds

and from the negative compounds, both protein sets must consist of
NF almost the same number of proteins.
g _ izsk (4) First, a preliminary docking study was performed with the 138
Nr4 proteins vs the 138 compounds. Here, the 138 compounds were
the ligands of the 138 complexes extracted from the PDB as
where the upper bar represents the average.giebe ak-th described in our previous repdéftCluster analysis based on the
eigenvector of M with eigenvaluee,, and the order of is definition of the distances given by eq 2 was applied to the 138

descendant. The vector of docking scores forkite compound ~ proteins vs the score panel of the 138 compounds. The group
Xy = (s s ... su¥) is represented by the linear combination of ~average method divided 138 proteins into two kinds of clusters,

¢ as namely 7 clusters and 23 clusters. These seven clusters showed a
good correspondence to the conventional functional classification.
Nc When two clusters out of the seven were adopted, the multiple active
X = chqu (5) site correction (MASC) scoring method showed good database
= enrichment for these two clusters, which consist of total 23 proteins.

o _ The members of each cluster would be similar to each other in

The coefficien{ ¢} represents the coordinate of the PCA space point of ligand-binding function. As the diverse protein set, we
of compounds. To calculate the PCA space of protein pockets, theselected the representative proteins from the 23 clusters. In each
same analysis can be applied, changing the suffix. The covariancecluster, one of the two proteins between which the distance is

matrix MP of compounds is defined as, shortest was selected to be the representative protein. These 23
\e proteins will be identified hereafter as “protein data set A” and
1 — — they are listed in Appendix A.
P = —_— _— _— . . .
M7 = NC;(Sk 3)@ ) ®6) Next, we tried to make a cluster, whose members are similar to

the MIF, and the number of proteins of the cluster is almost the
same as the number of proteins of protein set A. One cluster, which
consists of 26 proteins including the MIF, was selected from the
1 Ne above 7 clusters dividing the 138 proteins. We adopted all members
; = _Zﬁk @) of the cluster except the MIF and these 25 proteins will be identified
NcE& hereafter as “protein data set B” and they are listed in Appendix
A. Neither protein data set A nor B includes the target protein MIF.
Let ¢' be ani-th eigenvector of M, and the vector of docking Two compound datasets were prepared. One dataset (compound
scores for thei-th pocket is then represented by the linear set C) consists of 1012 compounds originated from a random
combination of¢', whose coefficient represents the coordinate of chemical library, which includes active compounds and negative

and

the PCA space of pockets. compounds of a target protein. The current classification method
Protein-compound docking simulation was performed by our can be used as an in silico screening method. This dataset was used
in-house program named Sievgene, which is a pretigand to evaluate the localization of the active compounds and the

flexible docking program for in silico drug screeniffgThe scoring database enrichment of the current method. Another dataset
function of this method is based on the rough shape of a protein (compound set D) consists of 1006 compounds, which are mainly
surface to reduce structural noise. The conventional potential some series of similar compounds, namely, amino acids, dipeptides,
function is applied to the outer region of the protein, while in tripeptides, etc. This dataset was used to evaluate the localization
contrast, a smooth virtual function is applied to the inner region of of the series of compounds and classification of the proteins.

the protein. Assuming that at least three ligand atoms come into The compound set (compound set C) consisted of 12 active
contact with the protein surface, a geometrical hash method is usedcompounds and 1000 negative compounds extracted from the
for protein—ligand conformation searching. This method was Coelacanth chemical compound library (Coelacanth Corporation,
applied to the 132 known proteiligand complexes and correctly ~ East Windsor, NJ). The 12 active compounds of MIF are listed in

predicted~50% of these complex conformations within the 2 A Figure 1, and their I values are listed in Table 1. Compouritis
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Figure 1. MIF active compounds.

Table 1. List of MIF Active Compounds

compound ICs0(uM) sourceé
1 0.038 Y
2 0.4 T
3 0.47 Y
4 0.55 Y
5 3.4 T
6 4.3 Y
7 7 1LJT
8 7.4 Y
9 8 T
10 8.1 T
11 30 T
12 no data 1CA7

aThe compound serial number is consistent with the number in Figure
1. 5“Y” indicates data originally presented by Orita eR&IT” represents
data from the current study, and “1LJT” and “1CA7” represent the PDB
IDs which were the source of the data in question.

and12 were selected from the PDB, and compoutd3, 4, 6 and
8 were reported in a previous stuéf/The others (compounds
5,9, 10, 11) were prepared in the present study. The definition of

the active compound is described at the last of this section. The
11047 compounds of the original Coelacanth chemical compound

library, which is a random library, were put in alphabetical order,

and the top 1000 negative compounds were selected. The correlatio
coefficient between the order and the number of atoms of compound

is only 0.12; thus, these 1000 compounds will form a random
library.

The size distribution of ligands is as follows: ratio of-09
atoms, 0.0%; ratio of 2629 atoms, 0.5%; ratio of 3639 atoms,
0.5%; ratio of 46-49 atoms, 6.5%; ratio of 5059 atoms, 22.5%;
ratio of 60—-69 atoms, 40.4%; ratio of 7079 atoms, 22.1%; and
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Table 2. List of AMP/ADP/ATP Binding Proteins

PDB name of residue residue

ID ligand?t residue A PA B PB C PC
12as AMP  100R 1

lady HAM 259R 1

laer AMP  458R 1

lasz ATP 325R 1 531R 3

laux ADT Caion 1,2,3

1b76 ATP 186R 1 220R,231R3

366R

1csn ATP Mg ion 1,2,3

lefv.  AMP  126A mainchain 1

lgol ATP Mg ion 2,3

1gtr  ATP  43H 1 270K 2,3

lhck ATP Mg ion 1,2,3

1nks ADP 54R 1

lpyg AMP 81R,193R,310R 1

1ses AMP 528R 1

2tmd ADP none none

3rlr  ATP 9K 1 91K 2 21K 3

2 The abbreviations HAM and ADT indicate histidyl adenosine mono-
phosphate, and adenosine diphosphate monothiophosphate, respectively.
“Residue A” and “PA” are the binding residue or atom of the protein and
the serial number of bonded phospate, where 1, 2 and 3 represent the first,
second and third phosphates of AMP/ADP/ATP, respectively; the same
applies to the terms “Residue B”, “PB”, “Residue C” and “PC". “Residue
A”, “Residue B” and “Residue C” bind “PA”, “PB” and “PC”, respectively.

Table 3. List of Sugar Binding Proteins

PDB ID name of ligand
label o-L-arabinose
labe2 p-L-arabinose
labfl o-p-fucose
labf2 [-p-fucose
5abpl o-D-galactose
5abp2 f-p-galactose
1bdg glucose
1glg D-galactose
2gbp f-p-glucose
Immu o-D-glucose
1gh7 B-p-xylopyranose
1s00 D-galactose
2aac f-p-fucose

The name of the ligand follows those in the PDB file.

SD files provided by the Coelacanth Chemical Corporation. The

atomic charges of each ligand were determined by the Gasteiger
method?®3° The atomic charges of proteins were the same as the
atomic charges of AMBER parm&9.

Another data set (compound set D) was also prepared to evaluate
the localizability of similar compounds and similar proteins in the
PCA spaces. This dataset consisted of a total of 169 proteins and
1006 compounds. Of the proteins, 138 were the basic protein sets
described above. In addition, 5 sugar binding proteins, 16 adenosine-
phosphate binding proteins, and 10 enzymes of prostaglandin were
included in the dataset. Tables-2 show the PDB IDs of these
proteins and ligands. In the present study, the sequence identities
and similarities are global sequence identities and global sequence
similarities calculated by FASTA with the Blosum50 mat#é3
Tables 5 and 6 show the names and structural information of the
16 AMP/ADP/ATP binding proteins and the 5 sugar binding

|ﬁroteins, respectively; note that the homology of these proteins is

uite low except in several protein pafsWith the exception of
the pairs 12as-lasz, 1csn-1gtr, 1csn-1nks, 1gol-1nks, 1gol-1ses,
1lhck-1ses and 1gh7-1s00, the amino acid sequence identities are
only 20-30%. Tables 5 and 6 also show the CATH classification
(Class, Architecture, Topology, Homologous Superfamily) of the
protein 3D structure®3% The architectures of the proteins also
differ, so the dataset includes a variety of 3D structures of proteins.

The compound data set includes the ligands of the 138 basic

ratio of more than 80 atoms, 7.4%. The average ligand size was proteins, the additional 6 monosaccharide binding proteins and the

64.3 atoms.

16 AMP/ADP/ATP binding proteins described above. In addition,

The 3D coordinates of chemical compounds were generated by20 amino acid monomers, 400 dipeptides, and 400 tripeptides are

the Concord program (Tripos, St. Louis, MO) from the 2D Sybyl

included. For the tripeptides, since the total number of tripeptides
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Table 4. List of Prostaglandin Binding Proteins and Inhibitors

PDB ID protein name of ligarid selectivity
none none suprofen COX1 selective
leqg COX-1 ibuprofen COX1 selective
legh COX-1 flurbiprofen COX1 selective
3pgh COX-2 flurbiprofen COX1 selective
4cox COX-2 indomethacin COX1 selective
1s2a prostaglandin D2  indomethacin COX1 selective

11-keto reductase
none none ketoprofen COX1 selective
none none naproxen COX1 selective
1lcx2 COX-2 Sc-558 COX2 selective
6c0X COX-2 Sc-558 COX2 selective
1s2c prostaglandin D2  flufenamic acid no data

11-keto reductase
none none celecoxib COX2 selective
none none etodolac COX2 selective
none none nimesulide COX2 selective
none none rofecoxib COX2 selective
1pxx COX-2 diclofenac COX2 selective
lcqe COX-1 flurbiprofen COX1 selective

aThe name of the ligand follows those in the PDB fité-Phenylsul-
fonamide-3-trifluoromethyl-G-bromophenylpyrazole.

Table 5. CATH Classification and Protein Names

PDB CATH CATH

code namé nob name

12as TLS 30.930.10 asparagine synthetase
lady ABA 40.50.800 histidyl-tRNA synthetase
laer CMP 90.175.10 exotoxin

lasz TLS 30.930.10 aspartyl-tRNA synthetase
laux TLS 30.470.20 synapsin la

1b76 no data no data glycyl-tRNA synthetase
lcsn TLS 30.200.20 casein kinase-1

lefv ABA 40.50.1120 electron-transfer flavoprotein
1gol TLS 30.200.20 Map kinase Erk2

1gtr ABA 40.50.620 glutaminyl-tRNA synthetase
1hck TLS 30.200.20 cyclin-dependent kinase 2
1nks ABA 40.50.300 adenylate kinase

1pyg CMP 90.270.10 glycogen phosphorylase b
1ses TLS 30.930.10 seryl-tRNA synthetase
2tmd ABA 40.50.720 trimethylamine dehydrogenase
3rlr CMP 90.188.10 ribonucleotide reductase R1

a CATH classification name. TLS, ABA and CMP correspond to two-
layer sandwich,ofoc sandwich and complex structures, respectively.
b CATH classification number. The first digits of all proteins are “3”.

Table 6. CATH Classification and Protein Names

PDB code

CATH nanfe CATH numbef

name

labe,labf,5alfpaSo sandwich 3.40.50.2300 L-arabinose-binding protein

1bdg ofa sandwich 3.40.367.20 hexokinase

1glg,2gbp ofa sandwich 3.40.50.2300  chemotactic protein receptor
Immu no data 8.1.176.1 galactose mutarotase

1gh7 f sandwich 2.60.120.180  xylanase

1s00 no data no data galactose mutarotase

2aac /3 sandwich 2.60.120.280  regulatory protein Arac

aCATH classification name? CATH classification numbett The ligands

of these proteins are different from each other. The names of these ligands

are summarized in Table 3.
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ratio of 50-59 atoms, 19.6%; ratio of 6669 atoms, 6.5%; and
ratio of more than 70 atoms, 1.5%. The average ligand size was
42.7 atoms.

The atomic charges of each ligand were determined by the
restricted electrostatic potential (RESP) procedure using HF/6-31G*
level quantum chemical calculatichsvhich were performed using
the programs GAMESS and Gaussiad®®& The atomic charges
of proteins, dipeptides and tripeptides were the same as those of
AMBER parm993t

The MIF active compounds were found by the following
experimental procedure. Binding affinity was experimentally
observed between MIF and 11046 chemical compounds selected
from the Coelacanth random library and their related compounds.
The first in vitro screening was a surface plasmon resonance assay
done by Biacore 3000 (Biacore International AB, Neleha
Switzerland). The second screening was carried out by tautomerase
enzymatic assay, which determined theg@alues of the active
compounds and verified the results of the first screening. The
experimental conditions were the same as those previously reported
by Orita et al.28 pH 6.0 with a buffer containing 25 mM potassium
phosphate, 0.5 mM EDTA, 0.01% tween20, and 0.25 mM
dopachrome methyl ester as a ligand. The density of MIF was 125
ng/mL. All experiments were performed at room temperature.

The definition of “active compound” was determined as follows;
the compound, which showed the reaction unit (RU20 before
injection and the RU> 20 after injection by the Biacore, was
selected as an active compound. Then, thg V@lues of the active
compounds found by the Biacore were determined as shown in
Table 1, then a compound whosesjCralue < 30 uM was
determined as an active compound. The Malue of one compound
(compoundl12) was unclear, but the compound was selected as
the active compound to increase the diversity of the set of active
compound.

Results and Discussion

Applications to the Focused Library for MIF. We applied
the current method to the analysis of the active and negative
compounds of MIF given by our in vitro screening assay. All
138 protein pockets were analyzed against the 1012 compounds
(compound set C). The average CPU time for a docking
procedure per pair of a pocket and a ligand was 149.4 s on a
Compag Alpha ES40 workstation. Two types of subsets of
protein pockets, protein sets A and B, were then prepared and
the current method was applied to these two subsets for
examination of the dependence on the choice of the proteins.
The 23 representative protein pockets of protein set A were
analyzed against the 1012 compounds. Figure 2 shows the
corresponding PCA plots. Then the 25 protein pockets of protein
set B were analyzed against the 1012 compounds. The PCA
plots are shown in Figure 3.

The PCA results based on the full set of 138 proteins carry
the information of all 138x 1012 docking scores, while the
PCA results based on protein data set A and B carries the
information of only 23x 1012 and 25< 1012 docking scores,
respectively. Thus, the PCA result based on the full set of 138

is as large as 8000=20%), all 20 amino acids were used as the Proteins is thought to be one of the best classification results.
first and last residues, and the second residues were randomlyThe PCA plots are shown in Figure 4.

selected from 20 amino acids to generate 400 tripeptides. Addition-

The 7 known active compounds (compourid$, 4, 6, 7, 8

ally, 9 disaccharides in the Cambridge Structural Database @SD) and12) are depicted as red circles in Figures4, and the 5
were added to the compound data seicellobiose 3-cellobiose,
o-lactose -lactose o-maltose, galabios®-mannoseq-b-talose,
and trehalose. Finally, the redundant 17 COX-2 inhibitors listed in Two or three of the newly found active compounds are close
Table 4 were included as examples of drugs. The total number of to the known active compounds in Figures£ In Figure 2,

compounds was 1006.

The size distribution of the ligands is as follows: ratio ef®

atoms, 0.1%; ratio of 1619 atoms,
14.1%; ratio of 36-39 atoms, 29.0%

1.7%; ratio of 2629 atoms,

: ratio of 4049 atoms, 26.2%;

active compounds found in the in vitro screening assay
(compound2, 5, 9, 10 and 11) are depicted as green circles.

the first, second, third, fourth, fifth and sixth eigenvalues of
M€ in eq 3 were 50.24%, 14.67%, 6.50%, 3.35%, 2.88% and
2.21%, respectively. Total 80.04% information was depicted.
In Figure 3, the first, second, third, fourth, fifth and sixth
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Figure 2. PCA plots of MIF active and negative compounds. Twenty- Figure 3. PCA plots of MIF active and negative compounds. Twenty-
three representative proteins (protein data set A) were used for thefive proteins of a cluster, which includes MIF were used for the analysis.
analysis. The red circles represent the 7 known active compounds, andMIF itself was excluded from the protein data set (protein data set B).
the green circles represent the 5 newly found active compounds. (a) The red circles represent the 7 known active compounds, and the green
PCA plot with the first and second major coordinates; (b) PCA plot filled circles represent the 5 newly found active compounds. (a) PCA
with the third and fourth major coordinates; (c) PCA plot with the fifth  plot with the first and second major coordinates; (b) PCA plot with
and sixth major coordinates. the third and fourth major coordinates; (c) PCA plot with the fifth and
sixth major coordinates.
eigenvalues of Min eq 3 were 53.17%, 14.82%, 6.91%, 2.55%,
2.42% and 2.41%, respectively. Total 82.28% information was to select a set of candidate active compounds, which is a so-
depicted. In Figure 4, the first, second, third, fourth, fifth and called focused library, even if the 3D structure of the target
sixth eigenvalues of lin eq 3 were 38.59%, 22.24%, 5.08%, protein is not available. When one or more active compounds
2.63%, 1.62% and 1.28%, respectively. are known a priori, the compounds, which are close to the
In Figures 2-4, the distribution of the active compounds is known active compound(s) in the PCA space could be candidate
localized comparing to the distribution of the negative com- active compounds. In Figures 3a and 4, the degree of localization
pounds in almost all cases. These results show that it is possibleof active compounds is similar, and the distributions of the active
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Figure 4. PCA plot of MIF active and negative compounds with the ~Figure 5. Database enrichment for MIF. The black, green, blue and
first and second major coordinates. All 138 proteins were used for the €d lines correspond to the database enrichment curves by the current

analysis. The red circles represent the 7 known active compounds, and”CA study with all 138 proteins, with the protein data set B, by the
the green circles represent the 5 newly found active compounds. ~ MASC scoring method with all 138 proteins, and by the MASC scoring
method with protein data set B and the target MIF, respectively.

compounds localize better than those shown in Figure 2a. Thus,
when the proteins are suitably selected, as in the present caséespectively. These results are consistent with the Figures 2 and
in which the proteins are close to the target protein, a data set3. The active compounds localized when protein set B is used
of only some proteins (25 proteins in the present case) givesrather than protein set A.
results similar to those obtained using the data set of all proteins  Protein data set B gives better results than protein data set
(138 proteins). Additionally, the present results show that the A; thus, the choice of a suitable set of proteins is important to
distribution does not change even if the target protein is not design a focused library. One way to make a good choices is to
used in the analysis. adopt proteins in a cluster, which includes the target protein.
Figures 2b and 2c show the PCA results of protein data set In Figures 2-4, the centers of distribution are different from
A projected onto the third and fourth axes, and the fifth and the origin of the axes. The docking score corresponds to the
sixth axes, respectively. The active compounds localize in Figure binding free energy so that the range of score valuesbi$—
2a, but do not so localize in Figures 2b and 2c. The projection 0.0 in the present study. In some cases, the docking procedure
of the active compounds onto the seventh and eighth axesfails to generate a proteifligand complex structure, and the
localizes again. Figures 3b and 3c show the PCA results of score is then set te-1. These points, which correspond to
protein data set B projected onto the third and fourth axes, andmisdocking, are located far away from the major cluster of
the fifth and sixth axes, respectively; the active compounds points in the PCA space so that the center of the distribution of
localize in both figures. Additionally, the projection of the active the major cluster is different from the origin of the axes.
compounds onto the seventh and eighth axes also localizes. Generation of the Focused Library.A focused library was
Thus, to make a focused library, 4 or more axes should be generated using the following method. In the PCA space, the
considered. compounds in a sphere whose center was set to the mass center
In Figures 2b and 2c, only one or two of the newly found of known compounds were selected as a focused library. The
active compounds are close to the known active compounds,principal component axes were scaled to set the standard
but in Figures 3b and 3c, almost all of the newly found active deviation of the distribution of compounds of each axis to 1.
compounds are close to the known active compounds. TheseTen major principal components were used. Figure 5 shows the
results suggest that the current analysis is useful to predict newdatabase enrichment of our focused library, changing the radius
active compound(s) based on the known active compound(s)of the sphere. The results obtained by the Multiple Active Site
when the protein data set is suitably selected. Correction (MASC) scoring method are also depicted for
The volume of the spatial distribution of the active compounds comparisorf-40
was estimated. In N-dimensional PCA space, the average radii The increase of number of the used principal components
of distribution of active and all compounds were calculated does not mean the increase of the enrichment. The enrichment
assuming that they are spherical distributions. Then, the volumeschanges due to the number of the used principal components
and overlapping volumes among these spheres were calculate@s follows: 16.7%, 83.3%, 75.0%, 75.0% and 75.0% of the
in the N-dimensional space. The larger volume means the widerligands were found among the first 10% of the database with
distribution. The overlapping volumes were scaled in %, namely, 1, 5, 10, 15, 20 principal components, respectively, when the
the overlapping volume between the sphere of active compoundsprotein set B was used. The first principal component, the first
and the sphere of the all compounds was divided by the volume5 principal components, the first 10 principal components, and
of the sphere of the all compounds. For protein set A, the the first 20 principal components have 53.17%, 79.87%, 89.98%,
volumes of active compounds in the whole compound’s space and 99.48% of the total information. The minor principal
were 26.0%, 15.0%, 20.2%, 42.9%, 30.4%, 27.0% and 29.5% components will have noise, which is a computational error,
for 1, 2, 3, 4, 5, 6 and 10 dimensional spaces, respectively. Forwe do not need the all information of the proteicompound
protein set B, the volumes of active compounds in the whole affinity matrix to achieve a good enrichment.
compound’s space were 59.9%, 4.4%, 5.1%, 4.9%, 4.6%, 8.1% The database enrichment of our focused library is better than
and 1.3% for 1, 2, 3, 4, 5, 6 and 10 dimensional spaces, that obtained by the MASC scoring method, until when the first
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15% of compounds are selected for the database. Even if all  (a) 5

proteins are used for screening, the present system remains "

superior, until the first 15% of compounds are selected for the I

database, after which the MASC system is better. The result of 30 .

the protein data set without the target protein MIF is quite close R "

to that of the protein data set with MIF, suggesting that our 2 ' . i o’ ) .
approach is effective even if the precise 3D structure of the 10 . 'Uﬂﬁ Egft e . LT
target protein is unknown. The present method measures the % o e Og:’*a' .

distances among compounds by the docking scores. The protein 2 e oL

pockets were used as probes to examine the chemical structure, -10 P IR I
which could be the partial structure or the whole structure, of i “’ 4 .

. -20 ® - e & .
each compound. Thus, when we adopt enough number of protein
pockets to distinguish the all compounds of the compound -30 ol :
library, the present method could divide the active compounds 40 ) A
from the negative compounds even without the target protein.

-50

In a previous study, a cell-based analysis was applied to 150 100 50 0 5 100 150
prepare a focused library, and this analysis was adopted in the 1t axis
BCUT method*! The compound space was divided into cells ®) 3
by mesh, and the compounds included in each cell in which an .
active compound was included were adopted into the focused
library. The cell-based analysis is suitable for designing a . .
random library, but the present method was found to be more 2 A
effective for generating a focused library in the current study. .
The distribution of active compounds is more circular (sphere)
than square (cube), and the volume of the circle (sphere) is
smaller than that of the square (cube) covering the distribution . ..
of the active compounds. pO, . Aﬁ—-.. K .

The most conventional indexes are the mass weight and Log ’ I3 | :
P of each compound. The principal components by the present 0 - '5 belhony . ‘e
study include the information about the number of atoms and o me iy @, .
the solvation free energy of each compound as mentioned later . a*
in “classification of compounds” section. Since the number of . .
atoms and the solvation free energy are closely related to the - *
mass weight and Log P, the present study considers these 20 1o 0 15t axis 1 2 30
indexes. We examined the efficiency of classifications by the _. . . .

: Figure 6. PCA plots of protein space. The red circles, blue circles,
present met_hod and the conventional method. The 10129reen squares, black squares, blue open squares, red open triangles,
compounds in compound set C were plotted onto 2D space, pjack open triangles and dots represent metalloproteases, acid proteases,
namely number of atoms vs solvation free energy. Then the sugar binding proteins, neuraminidases, endoribonucleases, AMP/ADP/
same screening method as the present study was applied to th&TP binding proteins, catalytic antibodies and other proteins, respec-
2D space. The conventional method yielded a—6.3.3-fold tively. (a) Using 1006 compounds; (b) using 1000 compounds extracted
enrichment, with 66.7% and 66.7% of the ligands found among o™ the Coelacanth random library.
the first 5% and 10% of the database, respectively. On the
contrary, the present method based on protein set B yielded
8.3—15-fold enrichment, with 75.0% and 83.3% of the ligands
found among the first 5% and 10% of the database, respectively.

Igr?v;?ilg;;ymtgtehorgesem study was better than that of the with the first and second major coordinates. The first, second,
C ) third and fourth eigenvalues of Min eq 6 were 62.27%,
The known seven active compounds consist of only 2D 12.57%, 3.35% and 2.63%, respectively.
atoms, and they are much smaller than the average size of the  1he present classification method successfully classified the
compound set C, 64.3 atoms. But the newly found five active protein binding pockets. As shown in Tables 5 and 6, some

compounds consist of 285 atoms, and they are a little bigger  roteins, which bind the similar ligands, are in the different
than these seven active compounds. Thus, the conventionakamily or have different 3D fold. Proteins, which bind similar

method could find the seven known active compounds out of jigands, could form clusters in the protein space, even if the
12, but it was difficult to find the rest newly found actives. On 5 mino acid sequences were not homologous.
the contrary, the present method could overcome this defect. the gistributions of endoribonucleases, metalloproteases,
Classification of Proteins. A total of 169 proteins were  sugar binding proteins and acid proteases are localized near each
analyzed using 1006 compounds (compound set D) as statethther, indicating that the PCA of the docking score matrix works
above. The average CPU time for a docking procedure by well as a functional analysis. Endoribonuclease binds RNA and
Sievgene was 68.1 s on a Compaq Alpha ES40 workstation. hydrolyzes its phosphodiester chemical bond. The RNA is
Tables 5 and 6 show the structural information of the AMP/ composed of only four kinds of RNAs (A, U, C and G), and
ADP/ATP binding proteins and sugar binding proteins. Most the diversity of the RNA binding pocket is therefore expected
of the global amino acid sequence identities are less than®25%, to be small.
and also the structure classification proves that these 3D folds The acid proteases in the present study were aspartic protease
are different to each other. The present structure classification (5erl, 1epo, leed), pepstatin (1apt, 1apu), rennin (1rne) and HIV

2nd axis

follows the CATH classification, and the first, second, third and
Sourth digits represent the class, architecture, topology and
homology classification numbe?&36

Figure 6a shows the results of PCA plotting of protein pockets
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Table 7. List of Endoribonucleases

PDB code CATH namie CATH no? name

2aad single sheet 2.20.25.50 ribonuclease T1
1rnt,6rnt single sheet 2.20.25.50 ribonuclease T1
1rds single sheet 2.20.25.50 ribonuclease Ms

a CATH classification name? CATH classification numbet The ligands
of 1rnt and 6rnt are guanosiné4@onophosphate and adenosirie-2
monophosphate, respectively.

Table 8. List of Metalloproteases

PDB code CATHnam®e  CATH no’ name

1hfc ofa sandwich  3.40.390.10 fibroblast collagenase
latl ofa sandwich  3.40.390.10  atrolysin C

1hyt,1Ina, roll 3.10.170.10 thermolysin

1tlp,1tmrf

ljap ofa sandwich  3.40.390.10  matrix

metalloproteinase-8

aCATH classification name? CATH classification numbett The ligands

of 1hyt, 1Ina, 1tlp and 1tmn are benzylsuccinic acid, dimethyl sulfoxide,

phosphoramidon anid-(1-carboxy-3-phenylpropyl)-leucyl+-tryptophan,
respectively.

Table 9. List of Acid Proteases

PDB code CATHnam®e  CATH no® name
5erl,lepo,leéd barrel 2.40.70.10 endothiapepsin
lapt,lapt barrel 2.40.70.10 penicillopepsin
1rne barrel 2.40.70.10 renin
1htf,1hos, 1hp¥ barrel 2.40.70.10 HIV-1 protease
lida barrel 2.40.70.10 HIV-2 protease
1qgbu barrel 2.40.70.10 HIV-1 protease

a CATH classification name? CATH classification numbet The ligands

Fukunishi et al.

variety of proteins is thus limited. This poor variety of proteins
may cause the overlap in the distributions of different proteins.

There are a certain number of redundant proteins in the
protein data set. Specifically, there are 1, 3 and 5 redundant
proteins for endoribonucleases, metalloproteases and acid pro-
teases, respectively, and 4 endoribonucleases, 7 metalloproteases
and 11 acid proteases were used in the present study. Tables
7—9 show the global amino acid sequence identities and
similarities of these proteins. Exactly identical proteins appear
as different points in the PCA space because the local pocket
structures differ depending on the ligand binding states.

The distribution of AMP/ADP/ATP binding proteins is
delocalized. The CATH classification numbers shown in Table
5 indicate that the global 3D structures of these proteins are
different from each other. Also, the local structures of the
binding pockets are different and, as shown in Table 2, the
binding mode of each complex is also different. For example,
the M¢?" ion of casein kinase-1 (1csn) or cyclin-dependent
kinase 2 (1hck) binds all three phosphates, but thé*Nign of
MAP kinase ERK2 (1gol) binds the second and third phosphates
but does not bind the first. In many cases, ARG or LYS residues
bind phosphates, but in trimethylamine dehydrogenase (2tmd),
the phosphate is not bonded by the protein but is exposed to
the solvent. There are a variety of distances between the
hydrophobic pocket, which binds the adenosine scaffold of
AMP/ADP/ATP, and the phosphate-binding site composed of
Mg?" ion, ARG, LYS or HIS. The chemical structures of AMP,
ADP and ATP are similar to each other and differ only in the
number of phosphates. However, the pharmacophores of the

of 5erl, lepo and leed are leucinol, n-carbonylmorpholine and Pd125754 AN P/ADP/ATP binding proteins are different; therefore, the
(tert-butyloxycarbonyl-1-hydroxy-3-phenylalanine-propylene-1-hydroxy-3- distribution of these proteins could be delocalized.

phenylalanine-ethylene), respectivelyThe ligands of lapt and lapu are
isovaleryl (lva)-Val-Val-Lysta-O-Et and isovaleryl (lva)-Val-Val-Sta-O- The robustness of this analysis was evaluated by changing
'(Ebt, reslpecgvely?lThﬁ "ngdst flJf 1htf, lh?l’? f)lnstlgPV ?ﬁel %(126?3_5 (%4- the compound data set. In this case, the atomic charges of
enzyicaroamoyl-pnenylacetylamino-me: -9,0-0Ime -thiazolidine-4- H
carbozylic acidy(r?ydro);yme%yl—2_—phenyle¥hyl)ami_de_)), y_Sb204144 (2 gorgpoun?s V(;I%re calc;]ulated by It_he_GellStcej'ger mfh?fdrhe h
phenyl-1-carbobenzyl-oxyvalyl-amino)ethyl-phosphinic acid) and Vx-478 c ' results di nOt. change qualitatively due to changes in the
(3(S-N-(3-tetrahydrofuranyloxycarbonyl)amino-&;N-isobutyl,4-aminoben- quality of the atomic charges between the RHF/6-31G* level
zenesulfonyl)amino-28)-hydroxy-4-phenylbutane), respectively. and the Gasteiger charges (data not shown). The compound data
set was also replaced by the Coelacanth random library, which
protease (1htf, 1hos, 1hpv, lida, 1gbu) as listed in Table 9. With was used for screening MIF active compounds as discussed
the exception of the pairs 5efrllapt, 1rne-1htf, 1rne-1gbu, 1htf- above. Figure 6b shows the PCA results obtained using 1000
lida, 1htf-1gbu, lida-1gbu, the amino acid sequence identitiescompounds extracted from this random library (compound set
are only 20-30%. The sequence identity between these acid C without the 12 active compounds). Although we expected
proteases is not high, but the local structures of pockets areno true binder for each protein in this random library, the PCA
similar in that all are at the clefts between the two units of the results did not change qualitatively. Specifically, the distributions
protein dimers, and these tunnel-like pockets are covered byof endoribonucleases, metalloproteases, sugar binding proteins
loop regions. Furthermore, the sizes of these pockets are similarand acid proteases are localized with each other, and the
Indeed, the inhibitors of HIV protease were developed based distribution of AMP/ADP/ATP binding proteins is delocalized,

on rennin inhibitorg?

The binding pockets of metalloproteases are also very similar.

Each binding pocket is at the cleft betweep-atrand and an
a-helix that is in parallel with thes strand, and a metal ion
that binds the ligand directly also binds thehelix. However

while the principal component axes are rotated.

Classification of Compounds.A total of 1006 compounds
(compound set D) were analyzed using 169 proteins; the set of
proteins and compounds is the same set discussed in the previous
section. To analyze diversity changes by oligomerization, the

the amino acid sequence identities among them are not so highdata set included 20 amino acids, 400 dipeptides, 400 tripep-
namely, with the exception of the pairs Lhfc-1atl and 1htc-1jap, tideps, 13 monosaccharides, and nine disaccharides. Redundant

the amino acid sequence identities are only-28%.

17 COX-2 inhibitors were also included as examples of drugs.

The CATH classification numbers support these observations. Figure 7 shows the PCA results of compounds with the first

As shown in Tables %9, the CATH classification numbers of

and second major coordinates. The first, second, third and fourth

most of the proteins examined in the present study are the sameeigenvalues of M in eq 3 were 73.99%, 13.87%, 1.87% and

in each group.

The proteins with the same functions are plotted as neighbor-

1.30%, respectively.
The distributions of amino acids, pepetides, saccharides and

ing points, even if the sequence identities between them areCOX-2 inhibitors are localized as shown in Figure 7; this

low. The distributions of some proteins with different functions

localization suggests that our compound classification system

overlap. Most of the proteins used in this analysis are proteasesworks well. The distributions of AMP/ADP/ATPs are restricted
and peptidases, which bind peptide-like molecules, and theto a small region, while the distribution of AMP/ADP/ATP
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The distribution of tripeptides is wider than that of dipeptides
or amino acid monomers, and the distribution of dipeptides is
wider than that of amino acid monomers. The oligomerization
of amino acids increases the diversity of the compounds.

In contrast, the diversity of disaccharides is almost the same
as that of monosaccharides. These distributions are separated
well, and there is no overlap between them. It is difficult to
distinguish between axial and equatorial OH groups. As shown
in Table 2, some proteins bind more than two kinds of
saccharides. The difference among saccharides is the difference
in the position of the OH groups of the saccharide. Thus,
individual monosaccharides could not be distinguished well, and
-15 . - individual disaccharides could not be distinguished as well as
monosaccharide. Thus, the diversities of mono- and disaccha-
rides tend to be underestimated. In contrast, the volume

30 .20 10 0 10 20 20 difference is clearly distinguished, and the distributions of mono-
1st axis and disaccharides are thus well separated.
Figure 7. PCA plot of compound space. The green crosses, blue  The distributions of COX-1 selective inhibitors and COX-2
crosses, and red crosses represent mono-, di- and tripeptides, respecgselective inhibitors are wide and these distributions overlap to
e oo g e e e e Eent ha o dierencs between them can b ierifid i
adenozine phogphétes (AMP, ApDP and ATP), COX-1 selective inhibi- .?ne. RCA plot. The compoun.ds.lllsted n T?b'e 4 are all COX-2
tors, COX-2 selective inhibitors and other compounds, respectively. Inhibitors but some of these inhibitors inhibit COX-1 rather than
COX-2, since the 3D structure of COX-2 is quite similar to
binding proteins is wide, as shown in Figure 6. The variety of that of COX-1; the sequence identity between them is 64.26%.

the binding pocket, which was discussed in the previous section The difference in activities between COX-1 selective inhibitor
does not indicate ,variety of the ligand. "and COX-2 selective inhibitd? is so little that our docking

The distributions of amino acids, dipeptides and tripepetides software was unable to distinguish between them. A more

are localized and the overlaps between these distributions arerc’g?ﬁ'sigxsgghec];ﬂ?gmlFég?}fég;?gfsgéggi“s%ﬂ oLigrhofr:%aggvelo
poor. Minor overlap is observed between the distributions of P y 9 P

amino acids and dipeptides, while no overlap is observed COX-2 selective inhibitof~4° .
between the distributions of amino acids and tripeptides. 1 he robustness of the present analysis was evaluated by
Furthermore, the distribution of dipeptides shows only a little "€Placing the compound data set fré)om charges by the RHF/6-
overlap with that of tripeptides. Part of the chemical structure 31G* level with Gasteiger chargé: The PCA resullts did
of amino acids is included in the dipeptides and tripeptides, not change_ either qualltat!vely or qualitatively with the change
but the pharmacophore could be different, showing the spatial iN the quality of the atomic charges (data not shown).
distribution of the essential functional groups for protdigand
binding. Also, the volumes of amino acids, dipeptides and
tripeptides are different. The protein, which binds only a small ~ We developed a new classification method for proteins and
molecule, cannot bind a larger molecule than its binding pocket. compounds, providing the PCA of a proteicompound affinity
Small compounds, such as amino acids and monosaccharidesnap, which is constructed by a proteicompound docking
locate on the left side of PCA space while larger compounds, program. Analysis of proteinligand binding affinity could be
such as dipeptides, tripeptides and disaccharides, locate on theised as a similarity search of the active compounds and the
right. Thus, similarity of partial chemical structure does not lead optimization. The first and second (or fourth) principal
correspond to the first or second principal axes in Figure 7. component values represent the total number of atoms and the
The same is true of dipeptides and tripeptides. solvation free energy per atom of the compound, respectively.
The physical meaning of the principal component axis was A focused library for MIF generated by our method showed
investigated, and the correlation coefficients between the total good database enrichment, which is equivalent to that obtained
number of atoms of each compound and the principal componentby an in silico screening method. If one or more active
values were calculated. The coefficients were 0.837 for the first compounds are found for a target protein, the compounds that
axis, 0.465 for the second axis, 0.176 for the third axis, 0.041 are close to the active compound in the compound space could
for the fourth axis, 0.085 for the fifth axis, and 0.014 for the be candidate active compounds for the target protein.
sixth axis. Thus, the first principal component axis corresponds The BCUT descriptor is useful to evaluate the diversity of a
to the total number of atoms of each compound. The total compound based on the information of the compound itself.
number of hydrogen donors, the total number of hydrogen This method requires neither the 3D structure of the target
acceptors, and the solvation free energy of a given compoundprotein nor the proteitligand docking; however, to apply the
depends strongly on the total number of atoms of the compound,BCUT method, many active compounds must be knéwam
so these values are not good parameters. The correlationthe other hand, the present classification method is based on
coefficients between the solvation free energy per atom of the the information of proteirtligand docking. Thus, when the 3D
compound and the principal component values were calculatedstructure of the target protein is available and a conventional
and were found to be 0.132 for the first axis, 0.311 for the in silico screening method could predict one or more candidate
second axis, 0.010 for the third axis, 0.494 for the fourth axis, active compound(s), this method could provide a focused library
0.157 for the fifth axis, and 0.084 for the sixth axis. Thus, the even if no active compound is known. Inversely, when some
second and fourth principal component axes represent theactive compounds are known, this method can provide a focused
solvation free energy per atom of a compound. library without any known 3D structure of the target protein. If

2nd axis

Conclusion
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the compounds that are generated by combinatorial synthesis Protein set A: The PDB IDs of the representative proteins

were plotted in the compound space, our method could evaluateof the protein set A are 1nis, laco, 1mdr, 1cbx, 2fox, 1mup,

the diversity of the compound library. 1gpq, 1¢83, 2ada, 1mrg, 1d3h, 4lbd, 1labf, 1lst, lets, 2ctc, 1pbd,
The drawback of our method is that it requires a large-scale 1rds, 2cmd, 2gbp, 1hsl, 1lah and lebg.

protein-ligand docking simulation. This problem may be solved ~ Protein set B: The PDB IDs of the proteins of the protein

by the usage of the recent grid computing. However, the setB are 7tim, 1r55, 1okl, 1ivb, 1bqg, 2tmn, 1snc, 2qwk, 1tace,

applications of a proteincompound affinity matrix are being ~ 1hsb, lyee, 1mdr, 1fl3, 3tpi, 2ack, 1pdz, 1cbx, 2cmd, 1mid,

developed and extended. For example, experimental observa3cpa, 1lcp, 1qpq, 4aah, 1ldm and 1pbd.

tions indicate that precise égvalues can be estimated from  Raferences

the proteir-compound affinity matrix’ _ T _
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